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Abstract 
Popular navigation applications such as Google Maps and Apple Maps provide 
distance-based or travel time-based alternative routes with no real-time risk scoring. 
There is a need for a real-time navigation system that can provide a data-driven 
decision on the safest path or route. By leveraging data from a diverse range of 
historical and real-time sources, this study successfully developed a user interface for a 
navigation tool or application that offers informed and data-driven decisions regarding 
the safest navigation options. The interface considers multiple scoring factors, including 
safety, distance, travel time, and an overall scoring metric. This study made a distinctive 
and valuable contribution by designing and implementing a robust safe navigation tool 
driven by artificial intelligence (AI). Unlike existing navigation tools that offer multiple 
uninformed route options, this tool provides users with an informed decision on the 
safest route. By leveraging advanced AI algorithms and integrating various data 
sources, this navigation tool enhances the accuracy and reliability of route selection, 
thereby improving overall road safety and ensuring users can make informed decisions 
for their journeys. 
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Introduction 
Navigation has a rich history believed to have originated with seafaring and later extended to 
land, aeronautics, and space navigation. In all cases, navigators determined their position relative 
to familiar locations or patterns, using methods such as dead reckoning or celestial navigation. 
As road signage limitations became apparent, navigation systems naturally gained popularity 
among drivers. The first car navigation system, capable of guiding drivers with the help of a 
rolling map, was introduced in 1910 (Jones Live Map Meter Company, 1910). Since then, car 
navigation systems have undergone significant advancements, including the introduction of 
built-in or portable devices. Not only have these devices evolved, but system capabilities and 
underlying algorithms have also been modified. The invention of the GPS in 1973 (Bray, 2014; 
Canales, 2018) had a profound impact on the car navigation industry, transitioning systems from 
dead reckoning to satellite-based navigation, albeit almost two decades after GPS's introduction. 
Another significant improvement was the inclusion of route-finding and route-planning features 
within in-car navigation. With the emergence of smartphones and navigation apps, advanced 
road navigation systems became nearly ubiquitous. Notably, travel time calculation based on 
traffic conditions and guiding users through the shortest path became an innovative feature. The 
route planning relied on shortest pathfinding algorithms (Gallo & Pallottino, 1988). Present-day 
road navigation systems go beyond finding the shortest path and now consider factors such as 
fuel efficiency and environmental friendliness in their route planning (Ding et al., 2017; Holden 
et al., 2020; Zeng et al., 2017). 

Since the 1960s, road navigation systems have been recognized as a driving assistance 
technology that enhances safety (Auer et al., 2016). Initially, these systems provided basic turn-
by-turn guidance to aid drivers in making safer driving decisions, such as maneuvering and 
changing lanes. More recent iterations of road navigation systems now also inform drivers about 
potential road hazards, including lane closures, changing speed limits, floods, and crashes. 
However, despite these advancements, route planning still does not prioritize safety. In a study 
conducted by Sohrabi and Lord (2022), the authors investigated the safety of suggested routes by 
navigation apps and found that the fastest route was not necessarily the safest. Their research 
revealed that a modest increase of 8% in travel time could result in a 23% reduction in the 
likelihood of being involved in a crash. The authors argued that road navigation primarily 
focuses on minimizing travel time, sometimes at the expense of directing drivers through local 
roads with inadequate geometry design, limited road markings and signage, increased 
interactions with vulnerable road users like cyclists and pedestrians, and heightened traffic 
conflicts, among other factors (Sohrabi & Lord, 2022). 

Route guidance systems (RGSs) have been considered driving assistance technologies since 1960. 
RGSs were initially used in GPS devices but have had a recent transformation into mobile 
applications. The goals of RGSs were limited to driver assistance and travel time reduction. Online 
or mobile navigation tools or RGSs such as Google Maps, Apple Maps, Waze, and MapQuest 
provide the shortest or fastest route between origin and destination locations, with some other 
options such as avoiding toll roads or avoiding freeways. None of these applications provide 



2 
 

information about safety. The fastest route is often associated with disruptions such as entering or 
exiting ramps in a quick fashion. On the other hand, the shortest route can be associated with other 
nuisances such as narrow lanes, lack of lighting, and other poor geometric design features.  

There is a need for a safe navigation tool that can provide accurate measures of safety by applying 
prior historical data and other key associated features in artificial intelligence (AI)-driven 
algorithms. The AI-driven safe navigation tool will have the applicability of evaluating roadway 
risk scores based on historical traffic crash data with a real-time inflow of data such as weather 
and incident information. Based on the acquired real-time information and the backend AI-driven 
models, the tool will suggest the safest path from a set of origins and destinations. When the tool 
is used in real-time, it will have the applicability of querying relevant spatiotemporal data to 
produce real-time risk scoring. In addition, the tool will consider roadway and environmental 
features such as curvature, frequent ramp exits or entrances, frequent merging scenarios, presence 
of shoulders, the time of the day, lighting conditions, and weather conditions to determine the 
safest route.  The unique contribution of a robust AI-driven safe navigation tool is to provide 
roadway users the ability to make an informed decision of the safest route instead of providing 
several uninformed decisions, as current navigation tools do. 

This study aims to address the current research gap by developing an AI-driven safe navigation 
tool. In this study, the research team conducted a thorough literature review and assessment of 
available tools or applications, collected and integrated multiple datasets, including crash, 
roadway, weather, and traffic data, demographic data, vehicle trajectories, incidents, and 
crowdsourced data from various sources, performed variable selection for modeling, determined 
the suitable AI algorithms, and developed an application tool that provides the safest real-time 
routing option by predicting scores based on safety, distance, and travel time.  The research team 
used a wide range of databases to determine the most suitable datasets.  

Literature Review 

Safety Consideration 
The overall literature aims to optimize route safety, but specific objectives vary based on safety 
definitions. Safe routing differs for vehicles, non-motorists, and public transportation. Vehicle 
safety considers time, distance, and critical factors. Non-motorist safety also considers these 
along with walkability, crime scores, and additional information. The literature identified five 
definitions of safety: crime risk, health risk, vehicle crash risk, pedestrian or cyclist crash risk, 
and hazardous materials (HAZMAT)  transportation risk. Around 41% of the studies analyzed 
vehicle crash risk, with 21% examining crashes involving pedestrians or cyclists. Crime risk 
studies made up 25%, while health risks and transportation risks associated with HAZMAT 
accounted for 7% of the literature. 
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Public safety literature contained information on safe route-finding. The literature also looked at 
locating a route (primarily in an urban setting) with minimum risk of being a victim of a crime 
(Utamima & Djunaidy, 2017; Byon et al., 2010; Mata et al., 2016; Kaur et al., 2021; Radojičić et 
al., 2018; Bura et al., 2019; Soni et al., 2019; Alpkoçak & Cetin, 2020; Levy et al., 2020; Puthige 
et al., 2021; Galbrun et al., 2016). The route with the minimum number of historical crimes was 
primarily introduced as the safest route  (Alpkoçak & Cetin, 2020; Byon et al., 2010; Kaur et al., 
2021; Mata et al., 2016), but some studies differentiated the type of crime and target specified 
crimes for their safe route-finding analysis (for example, robbery; Radojičić et al., 2018) and 
crimes that could result in injury or death (Galbrun et al., 2016; Levy et al., 2020; Puthige et al., 
2021; Soni et al., 2019; Utamima & Djunaidy, 2017).  

The literature also studied the safest route to minimize the risk of exposure to COVID-19 
(Mishra et al., 2021; Cantarero et al., 2021; Khanfor et al., 2020), primarily through maintaining 
social distancing and avoiding crowded communities or zones. The literature review also 
identified several methods used to identify and avoid high-exposure hotspots. Mishra et al. 
(2021) identified medical zones, high-density residential areas, and roads with a higher potential 
for connectivity of people and COVID-19 exposure hotspots. Khanfor et al. (2020) introduced a 
method using internet-of-things devices in smart cities for finding pedestrian routes that help 
individuals avoid areas where social distancing is not properly followed. Cantarero et al. (2021) 
defined high-exposure areas as areas that have a high density of population and occupations. 

A large portion of the literature focused on the path that reduces the likelihood of car crashes (Ito 
& Koji, 2020; Li et al., 2014; Sarraf & McGuire, 2018; Abdelhamid et al., 2016; El-Wakeel et 
al., 2018; He & Qin, 2017; Hoseinzadeh et al., 2020; Zhou et al., 2017; Abdelrahman et al., 
2019; Hayes et al., 2020; Krumm & Horvitz, 2017; Li et al., 2016; Takeno et al., 2016; Kamal 
Alsheref, 2019; Soni et al., 2019; Liu et al., 2017; Puthige et al., 2021; Chen & Lou, 2021). 
Typically, the safest route is the route with lower historical crash rates (Li et al., 2016), but some 
studies also consider the severity of crashes. Pedestrian and cyclist safety are also studied in the 
literature, with pedestrian and cyclist safe routes aiming to maximize the safety of pedestrians 
and cyclists regarding the risk of road crashes (Santhanavanich et al., 2020; Shah et al., 2020; 
Bao et al., 2017; Ouyang et al., 2014; Yew et al., 2010; Kusano & Inoue, 2013; Chandra, 2014; 
Shubenkova et al., 2018; Lozano Domínguez & Mateo Sanguino, 2021). Additional data inputs 
such as sidewalk presence, the network of sidewalks, trails, and walkability scores are also 
typically considered for the safe routing of non-motorists. Lighting (Ouyang et al., 2014) and 
weather conditions (Shah et al., 2020), among others, have been associated with the risk of 
crashes.  

Route-finding also included the HAZMAT transportation risk (Eren & Tuzkaya, 2021; Preda et 
al., 2013). HAZMAT transportation route-finding was developed for various types of HAZMAT 
by Preda et al. (2013). Eren and Tuzkaya (2021) proposed safe route-finding for COVID-19-
related HAZMAT. For HAZMAT, the safest route is usually considered to be a route with less 
risk of HAZMAT exposure and emissions.  
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Safety Measurements 
The reviewed studies displayed considerable diversity in terms of the measurement and 
quantification of safety. To summarize, safety was evaluated using different approaches 
including (1) data-driven analyses of crash frequency, crash rate, or incident/crash probability, 
(2) a scoring method, and (3) safety-indicator variables used as a substitute for risk. 

Data-driven Measurement of Safety 
The first group of approaches commonly utilized historical crash data for their analyses. Takeno 
et al. (2016) employed the dangerous point and degree of risk as safety measures to propose a 
safe route that avoids high-crash frequency areas. Hoseinzadeh et al. (2020) measured safety 
based on the average crash number, route volatility, and driving style and introduced an 
impedance index that combines safety and travel time for route selection. Zhou et al. (2017) 
defined the danger index to represent collision density on streets, indicating the level of danger in 
a particular street. Puthige et al. (2021) initially defined a crash score based on the severity of a 
crime and assigned weights to different types of crimes, resulting in a crime score that could be 
used to calculate a final danger index. Santhanavanich et al. (2020) incorporated historical traffic 
crash data into a geodatabase and identified high-risk areas or crash hot spots that their route 
planning algorithm aimed to avoid. Utamima and Djunaidy (2017) defined dangerous points 
within a specific radius based on crime data, including type, location, and description, which 
their route selection algorithm aimed to avoid. Yew et al. (2010) measured safety by calculating 
the ratio of reported incidents to exposure, treating the risk rate as a probability for the route-
finding algorithm. Hayes et al. (2020) used the crash rate as a representation of safety, 
determined by dividing the number of crashes on a road in the past 12 months by the maximum 
number of crashes on a single road in the selected region. Levy et al. (2020) incorporated safety, 
defined by the average distance from previously known crime spots during the learning phase, 
into the reward function of a reinforcement learning algorithm, which generated routes that 
avoided the crime points. Alpkoçak and Cetin (2020) compared and measured the safety of 
regions using the crime rate, which represents the ratio of incidents to the population in a given 
region. Bura et al. (2019) measured safety by considering the number of crime records with the 
aim of finding routes with fewer crime records.  

Advanced data-driven models were utilized to estimate the likelihood of an incident through 
prediction models. Mata et al. (2016) used the Bayes model to categorize crimes and calculate 
the probability of events occurring at specific times, days, and locations. In their study, Radojičić 
et al. (2018) defined risk as the probability of an event happening on a specific route, which 
varied as the vehicle traveled further. Abdelhamid et al. (2016) examined the likelihood of being 
involved in crashes by analyzing the characteristics of the road segment and the behavior of the 
vehicle driver. Similarly, Abdelrahman et al. (2019) determined the probability of crashes by 
considering the number of crashes, near-crashes, and baseline events observed in the driving 
environment. Krumm and Horvitz (2017) used independent Bernoulli trials to estimate the 
hourly probability of a single-vehicle crash on a specific road segment. Galbrun et al. (2016) 
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assigned risk scores to edges based on the probability of crime events occurring on the 
corresponding road segment.  

Scoring Technique 
The second group of approaches employed a scoring technique to measure safety, utilizing a 
scaled value. Kaur et al. (2021) assigned safety scores ranging from 0 to 15 to road segments. 
They adjusted these scores based on specific parameters, such as the presence of a police station 
or passing through deserted regions. Higher scores indicated safer road segments, thereby 
determining the safest route. Bao et al. (2017) assessed individual safety factors and assigned 
safety scores to segments, where higher scores indicated safer routes. The overall route safety 
score was determined by summing up sub-route scores, which were then used as weights in the 
shortest route-finding algorithm for optimal route determination. Mishra et al. (2021) assessed 
safety using various hazard factors, assigning numerical values to each. Byon et al. (2010) 
focused on crime risk, tallying the number of deaths associated with each zone. The zone with 
the highest death count received a rating of 5 and the lowest a rating of 1. Soni et al. (2019) used 
an overall numeric risk score to measure safety. By considering all points and regions, they 
estimated the average crime and crash scores. The risk score was obtained by summing up these 
averaged scores. Shah et al. (2020) studied pedestrian safety by using traffic and weather data to 
assess safety. They defined a safety factor based on traffic and weather conditions. Eren and 
Tuzkaya (2021) developed a safety score for Medical Waste Management that ranged from 1 to 
10. Kamal Alsheref (2019) used traffic crashes as the safety parameter and measured safety 
importance using Saaty's 9-point scale (Zanakis et al., 1998). The obtained safety intensity was 
incorporated into the weight calculation in the route selection algorithm. 

Safety Indicator 
The final group of approaches assessed safety using various safety indicators. Khanfor et al. 
(2020) assessed safety using weighted edges in a road map graph to find the safest route. 
Cantarero et al. (2021) developed a method to measure safety by considering citizen density, 
occupation level, behavior, vulnerability, and transmission risk. Shubenkova et al. (2018) 
assessed safety using objective and subjective parameters. Each parameter was given a numerical 
value and weight, and safety was calculated by multiplying these values and weights. Ouyang et 
al. (2014) assessed cyclist safety using factors like slope, road type, width, signs, and lighting. 
Each factor had different levels, and safety weights were assigned from 0 to 1 (with 1 being the 
safest). The safety coefficient was calculated by multiplying these weights. El-Wakeel et al. 
(2018) identified and categorized road surface types and anomalies, qualitatively labeling 
average road quality as an indicator of safety for route selection. Ito and Koji (2020) considered 
rain events on roads as risky situations, defining numerical traffic risk levels from 1 to 10 based 
on historical rain events. He and Qin (2017) used the ratio of the deceleration rate to the 
maximum available deceleration rate as a proxy for traffic safety, creating a safety hazard index 
for roadway segments and intersections. Chandra (2014) developed crash indicators for cyclists 
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and older drivers, considering traffic attributes like speed and density, driver attributes such as 
perception-reaction time, and street attributes such as length and tire-to-road friction coefficient. 

Route-finding Algorithms 
In the literature, the Dijkstra algorithm and its variants were mainly used to find optimal routes 
(Santhanavanich et al., 2020; Mishra et al., 2021; Utamima & Djunaidy, 2017; Cantarero et al., 
2021; Sarraf & McGuire, 2018; Abdelhamid et al., 2016; Byon et al., 2010; Zhou et al., 2017; 
Mata et al., 2016; Krumm & Horvitz, 2017; Takeno et al., 2016; Yew et al., 2010; Liu et al., 
2017; Galbrun et al., 2016). Originally, the Dijkstra algorithm aimed to find the shortest route. 
Now, it also considers safety by minimizing a cost function. This modified version calculates the 
lowest-cost path from one starting point to all other points in a weighted, directed graph. Inputs 
include safety parameters and geographic data. By incorporating factors like crime rate, road 
slope, scenic view, and ground surface elevation, the algorithm suggests multiple safe route 
options. Byon et al. (2010) improved the algorithm's safety calculations, resulting in routes with 
lower crime rates and better road conditions. The A* algorithm was also used in the literature 
with a modified heuristic function (Hayes et al., 2020; Alpkoçak & Cetin, 2020). The input 
parameters contain the geographic information for the origin and destination points and the 
safety-related parameters, similar to the Dijkstra algorithm. 

Ranking the shortest path and its alternatives based on safety is another method for finding the 
safest route (Ito and Koji, 2020; Hoseinzadeh et al., 2020; Bura et al., 2019; Bao et al., 2017; Liu 
et al., 2017; Puthige et al., 2021; Chandra, 2014). Machine learning (ML) can generate safety 
measurements and predict safe routes. Researchers have used deep reinforcement learning to find 
efficient routes based on factors like crime incidents, vehicle speed, and road conditions (Levy et 
al., 2020). The algorithm considers starting and ending coordinates and outputs the safest path. 

The algorithms for safe route-finding can be classified based on their predictive/reactive nature, 
static/dynamic properties, and centralized/decentralized designs. The following sections provide 
an overview of the literature, focusing on the algorithm's specific characteristics. 

Predictive vs. Reactive Algorithms 
Route-finding algorithms can be categorized as reactive or predictive (Schmitt & Jula, 2006). 
The literature consists of 78.05% predictive algorithms and 21.95% reactive algorithms. Reactive 
algorithms rely on observed data (Schmitt &  Jula, 2006), while predictive algorithms use models 
to anticipate future conditions. In crime event estimation, various methods have been employed: 
Gaussian kernel density estimation (Galbrun et al., 2016), Bernoulli trials for crash probability 
(Krumm & Horvitz, 2017), Bayes algorithm for crime probability prediction (Mata et al., 2016), 
and considering behavior and context for risk prediction (Abdelrahman et al., 2019). Machine 
learning models, such as deep reinforcement learning, can also be used, as shown by Levy et al. 
(2020). Predictive algorithms can incorporate safety parameters to generate an overall safety 
index (Li et al., 2014; Li et al., 2016; Radojičić et al., 2018). 
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Static vs. Dynamic Algorithms 
The route-finding algorithm can be divided into two types, static and dynamic, depending on if 
the route-finding system reacts to real-time information (Schmitt & Jula, 2006; Herbert & Mili, 
2008; Dong, 2011; Khanjary & Hashemi, 2012). Static algorithms make up 63.41% of the 
reviewed studies (Mishra et al., 2021; Utamima & Djunaidy, 2017; Sarraf & McGuire, 2018; 
Preda et al., 2013; He & Qin, 2017; Byon et al., 2010; Zhou et al., 2017; Mata et al., 2016; 
Radojičić et al., 2018; Hayes et al., 2020; Bura et al., 2019; Krumm & Horvitz, 2017; Takeno et 
al., 2016; Kamal Alsheref, 2019; Soni et al., 2019; Bao et al., 2017; Eren & Tuzkaya, 2021; 
Alpkoçak & Cetin, 2020; Yew et al., 2010; Levy et al., 2020; Puthige et al., 2021; Chandra, 
2014; Chen & Lou, 2021; Khanfor et al., 2020; Shubenkova et al., 2018; Galbrun et al., 2016; 
Lozano Domínguez & Mateo Sanguino, 2021). Dynamic algorithms make up 36.59% 
(Santhanavanich et al., 2020; Ito & Koji, 2020; Li et al., 2014; Cantarero et al., 2021; Shah et al., 
2020; Abdelhamid et al., 2016; El-Wakeel et al., 2018; Hoseinzadeh et al., 2020; Abdelrahman et 
al., 2019; Kaur et al., 2021; Li et al., 2016; Ouyang et al., 2014; Liu et al., 2017; Kusano & 
Inoue, 2013). There are both static and dynamic algorithms from each year except for 2010. The 
challenges in handling real-time data may account for the lower publication rate of dynamic 
algorithms in contrast to static algorithms. 

The datasets employed in the static algorithms and dynamic algorithms can be classified into 
geographic information datasets, historic datasets, and real-time datasets. Geographic datasets, 
containing start and endpoint information along with road network data, are used for both static 
and dynamic route-finding. OpenStreetMap, Bing Maps, and Google Maps are example sources 
for these datasets (Santhanavanich et al., 2020; Mishra et al., 2021; Utamima & Djunaidy, 2017; 
Cantarero et al., 2021; Shah et al., 2020; Sarraf & McGuire, 2018; El-Wakeel et al., 2018; He & 
Qin, 2017; Zhou et al., 2017; Hayes et al., 2020; Bura et al., 2019; Krumm & Horvitz, 2017; 
Takeno et al., 2016; Soni et al., 2019; Alpkoçak & Cetin, 2020; Liu et al., 2017; Levy et al., 
2020; Puthige et al., 2021; Khanfor et al., 2020; Galbrun et al., 2016; Lozano Domínguez & 
Mateo Sanguino, 2021). Static algorithms have also used historical data for safety measurements; 
as an example, the static algorithm-related studies in the crime risk category used historical 
crime records while the dynamic algorithms incorporated real-time data. The literature also used 
various real-time datasets, including news websites (Mata et al., 2016; Kaur et al., 2021), official 
reports (Li et al., 2014; Hoseinzadeh et al., 2020; Li et al., 2016), various sensors and GPS data 
(Ito & Koji, 2020; El-Wakeel et al., 2018; Abdelrahman et al., 2019; Ouyang et al., 2014; 
Kusano & Inoue, 2013), and data from application programming interfaces (APIs) 
(Santhanavanich et al., 2020; Cantarero et al., 2021; Shah et al., 2020; Abdelhamid et al., 2016; 
Liu et al., 2017).   

Centralized vs. Decentralized Algorithms 
Route-finding algorithms can be decentralized (Schmitt & Jula, 2006; Khanjary & Hashemi, 
2012), where individual users make decisions to maximize their benefit, or centralized (Schmitt 
& Jula, 2006; Khanjary & Hashemi, 2012), where the aim is to optimize the benefit of all users 
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or society. In the safe route-finding literature, decentralized algorithms dominate, as all reviewed 
papers use them. 

Safe Route-finding in Road Navigation 
Safe route-finding algorithms guide users by providing safety information on different routes. 
Relying solely on historical data to estimate crash risk has limitations because crashes are rare 
and involve factors that can change over time (Mannering, 2018). Various factors, such as road 
conditions, weather, user behavior, and traffic, influence crash risk (Petridou & Moustaki, 2000; 
Lord et al., 2021; Qiu & Nixon, 2008). Therefore, safe route-finding should consider these 
changing factors and offer future-oriented insights for initial route selection and alternative 
paths. Ideally, a dynamic, predictive algorithm is needed to provide reliable real-time crash risk 
predictions. 

Transitioning to predictive algorithms requires crash prediction models. Traditional models 
assume crashes follow a binary trial and use the Poisson process for multiple vehicles (Lord et 
al., 2005). However, crashes typically follow a negative binomial distribution over a specific 
time period. These models consider environmental, behavioral, and traffic factors to estimate 
expected crashes (Washington et al., 2020), but they have limitations for dynamic routing. Real-
time models can update and consider traffic volatility (Hossain et al., 2019). Some models 
predict vehicle-level crash risks (Basso et al., 2021), incorporating user-specific factors like 
driving experience and vehicle characteristics. These personalized models enhance risk 
estimations for personalized route selection. 

In the literature on roadway safety, crashes serve as the primary indicator of safety (Lord et al., 
2021). However, given the difficulties in accessing comprehensive and reliable crash databases, 
alternative measures of safety, such as time to collision and traffic conflicts, have been employed 
as substitutes (Lord et al., 2021). Nevertheless, scoring-based safety assessments are susceptible 
to subject bias. Although a range of safety metrics can be employed to evaluate the safety of 
individual road segments, assessing the overall safety of a route (which typically comprises 
multiple road segments) is essential for identifying a secure path. A comprehensive database is 
essential for safe route finding. Two main types are needed: (1) a road network inventory 
database, and (2) a database with operational measures like speed, travel time, and historical 
crash data for each road segment.  

Table 1 discusses different data elements and sources. For additional data sources, refer to Tarko 
et al. (2021). Additional details of the literature review are provided in Appendix A.  
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Table 1. Example Data Sources for Safe Route-finding 

Data Elements Data Source 
SPEED MEASURES  

Posted speed limit or travel time State DOT, HERE, SHRP 2-RID 

Avg. operating speed, percentile speed, & speed variance  
State DOT, INRIX, INRIX XD, HERE, 
NPMRDS 

Continuous 5-minute, 15-minute, hourly, daily, monthly & 
annual speed  

State DOT, INRIX, INRIX XD, HERE, 
NPMRDS 

Vehicle trajectory data or waypoint data INRIX, Wejo, StreetLight 

Percent of vehicles exceeding speed limit State DOT 

ROADWAY INVENTORY DATA  

Segment length 
State DOT, HPMS, SHRP 2-RID, 
GoogleEarth 

Number of lanes State DOT, HPMS, SHRP 2-RID, 
GoogleEarth 

Shoulder and lane width State DOT, HPMS, SHRP 2-RID, 
GoogleEarth 

Horizontal and vertical alignment State DOT, HPMS, SHRP 2-RID, 
GoogleEarth 

Median barrier State DOT, HPMS, SHRP 2-RID, 
GoogleEarth 

Roadside fixed objects (barrier, guardrail, poles) State DOT, HPMS, SHRP 2-RID, 
GoogleEarth 

Traffic control devices, pavement condition State DOT, HPMS, SHRP 2-RID, 
GoogleEarth 

WEATHER CHARACTERISTICS  

Continuous hourly, daily, monthly and annual 
precipitation & visibility data 

NOAA, Road Weather Information System 
(RWIS) 

TRAFFIC VOLUME MEASURES  

Annual average daily traffic  State DOT, TMAS, HPMS, SHRP2-RID, 
StreetLight Data Inc. 

Hourly traffic volume  TMAS, StreetLight 
CRASH MEASURES  

Crash time and date State DOT, HSIS, SHRP 2-RID 

Crash location State DOT, HSIS, SHRP 2-RID 

Crash type and severity State DOT, HSIS, SHRP 2-RID 

Crash contributing factors (e.g., speeding) State DOT, HSIS, SHRP 2-RID 

Lighting and weather conditions State DOT, HSIS, SHRP 2-RID 
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Data Elements Data Source 
REAL-TIME TRAFFIC DATA FOR THE U.S.   

1.70 million cases (2016-2019) [every 90 seconds] MapQuest Traffic Application 
Programming Interface (API)  

0.54 million cases (2016-2019) [every 90 seconds] Bing Map Traffic API  
REAL-TIME INCIDENT DATA  

Crowdsourced data Waze 
 

Methodology 

Data Needs for Safe Navigation Tool 
Roadway inventory data typically includes information about various roadway features, such as 
segment length, roadbed width, median type, shoulder type, and shoulder width. In many cases, 
these roadway features are provided in separate layers. However, some state databases may not 
offer additional geometric data such as super elevation, curve radius, and posted speed limit. To 
obtain supplementary geometric data, researchers can utilize resources like OpenStreetMap and 
private data vendors like HERE. 

Regarding operational measures, researchers need to gather data on two main metrics: features 
related to travel time and traffic volume, and features related to recurrent and non-recurrent 
events, such as road incidents. Figure 1 provides an overview of the databases required for static 
and dynamic safe route finding. Several potential open-source datasets can be obtained from 
entities like Departments of Transportation (DOTs), the Highway Performance Monitoring 
System (HPMS), the Highway Safety Information System (HSIS), the Roadway Inventory 
Database (RID), and the Naturalistic Driving Study (NDS) data (from the Second Strategic 
Highway Research Program or SHRP 2). Additionally, data from resources like Traffic 
Monitoring Analysis Systems (TMAS) and the National Performance Management Research 
Data Set (NPMRDS) can be accessed. Commercial private data vendors offer the option to 
purchase or acquire data. Some private data vendors, like Wejo, also provide data obtained from 
vehicle on-board devices, encompassing elements like trajectory, wiper usage, acceleration, 
deceleration, hard braking, sudden stoppage, and near collision. Real-time traffic data can be 
acquired from sources such as MapQuest (“Official MapQuest – Maps, Driving Directions, Live 
Traffic,” n.d.) and Bing Map Traffic AI (“Bing Maps Dev Center – Bing Maps Dev Center,” 
n.d.). Crowdsourced databases like Waze can serve as potential sources for real-time incidents. 
To design a safe routing algorithm, it is necessary to gather data from both public and private 
data sources. As previously noted,  

Table 1, above, outlines some of the key data elements and the corresponding data sources. 
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Figure 1. Static and dynamic safe route-finding data requirements. 

Databases for Texas-based Case Study 
The research team used Texas as a case study to develop a Texas-based AI-driven safe 
navigation tool. The following datasets were used for the tool.  Additional details of the data 
preparation method are provided in Appendix B. 

CRIS 
The research team collected crash data from TxDOT for 5 years (2017–2021), as shown in Table 
2.  There are 172 fields in the Crash Records Information System (CRIS) dataset.  For example, 
in the 2021 CRIS data, among the 552,125 unique crashes, 542,445 crashes (~98.25%) contain 
absolute location data in the form of latitude and longitude coordinates.  The “Latitude” and 
“Longitude” fields are recorded to the fifth decimal place, which signifies accuracy up to 3.6 
feet.  For the initial spatial analysis, only the “CRASH_ID,” “Latitude,” and “Longitude” fields 
were used, as shown in Table 3.   

Table 2. Overview of CRIS 

 2017 2018 2019 2020 2021 
Total Entries 538,739 626,514 560,835 475,132 552,125 

Entries with Lat-long 499,484 531,848 543,039 465,938 542,445 
Entries Missing  

Lat-Long 39,225 94,666 17,796 9,194 9,680 

Total Number of Variables 170 170 170 173 173 
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Table 3. Key Attributes for Spatial Analysis 

No. Attribute Name CRIS Field Description 
1 Crash ID Crash_ID System-generated unique identifying number for a crash. 
2 Latitude Latitude Latitude map coordinate of the crash. 
3 Longitude Longitude Longitude map coordinate of the crash. 

RHiNO  
The Roadway Inventory Annual Data published by the TxDOT is publicly available for 
download as a zip file. This database is known as Roadway Highway Inventory Network Offload 
(RHiNO). The zip file contains two shapefiles: one with assets and another with no assets. The 
primary key, all unique values, and the column of the shapefile without assets comprise the 
“GID” column.  The shapefile with assets does not have a field with all unique values.  In 2021, 
there were 514,480 road segments recorded in the shapefile without assets, as shown in Table 4.  
In the same year, there were 883,837 road segments recorded in the shapefile with assets.  There 
were 513,885 unique values recorded in the shapefile with assets “GID” column.  There were 
seven fields in the shapefile without assets (as shown in Table 4).  There were 202 fields in the 
shapefile with assets. 

Table 4. Overview of RHiNO Without Assets 

Description Count/Information 
Total Records 514,480 
Total Fields 7 
Primary Key GID 

Entity TxDOT 

Source URL https://www.txdot.gov/data-maps/roadway-
inventory.html 

Classification Public Data 
Datum North American Datum 1983 

NLDAS 
The goal of the North American Land Data Assimilation System (NLDAS) is to construct 
quality-controlled and spatially and temporally consistent land-surface model (LSM) datasets 
from the best available observations and reanalyze the data to support modeling activities.  
Specifically, this system is intended to reduce errors in the stores of soil moisture and energy 
which are often present in numerical weather prediction models and which degrade the accuracy 
of forecasts. NLDAS is currently running operationally in near real-time (~4-day lag) on a 1/8th-
degree grid with an hourly timestep over central North America (25–53 North; see Table 5).  
Retrospective hourly/monthly NLDAS datasets extend back to January 1979.  NLDAS 
constructed a forcing dataset from a daily gauge-based precipitation analysis (temporally 
disaggregated to hourly using Stage II radar data), bias-corrected shortwave radiation, and 
surface meteorology reanalysis to drive four different LSMs to produce outputs such as surface 
fluxes, soil moisture, snow cover, and streamflow. 
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Table 5. Overview of NLDAS 

Description Information 
Spatial 0.125 ° x 0.125 ° 

Temporal 1 hour 
Range -108,25, -92,37 

crs         +proj=longlat +R=6371200 +no_defs 
Time 01/01/2017 - 12/31/2021 

Source URL https://disc.gsfc.nasa.gov/datasets?keywords=N
LDAS&page=1 

Routing Algorithms 
Popular navigation applications such as Google Maps and Apple Maps provide distance-based or 
travel time-based alternative routes with no real-time risk scoring. There is a need for a real-time 
navigation system that can supply more opportunities to avoid crash risks. This study used a 
Google Directions API and an Open Route Services (ORS) API to explore the route-finding 
algorithms with the inclusion of safety risk scores of different routes. The tool developed from 
this study will provide appropriate and proactive interventions that will reduce crash risk. 

Google Directions API Shortest Path Algorithms 
Google Maps essentially uses two graph algorithms, Dijkstra’s algorithm and an A* algorithm 
(Mehta et al., 2019), to calculate the shortest distance from the source to the destination. 
Developers can use Google Directions API to use the function to display the shortest route in 
Google Maps. Google Directions API provides three alternative routes for users to choose the 
most appropriate one according to the specific situation. 

Dijkstra’s Algorithm 
Dijkstra's algorithm is the basic algorithm in both the Google Directions API and ORS API. It is 
an approach to solving the single-source shortest path problem for an assignment graph (M. Noto 
& H. Sato, 2000). This algorithm takes out the least distant of the unvisited nodes each time and 
updates the distances of the other nodes with that node (Deng et al., 2012). The point of the 
algorithm is to repeatedly select the shortest segment every time until all of the nodes can be 
found. 

A* Algorithm 
The A* algorithm is one of the best-known path planning algorithms and can be applied to a 
metric or topological configuration space. It is defined as a best-first algorithm because each cell 
in the configuration space is evaluated by heuristic distance (Manhattan distance) of the cell to 
the goal node and the length of the path from the initial node to the goal node through the 
selected sequence of cells (Duchoň et al., 2014). Manhattan distance is the number of steps from 
the current node to the goal node, disregarding diagonal nodes. 



14 
 

ORS API Shortest Path Algorithms 
The first principle to understand about the algorithm used for calculating the shortest route in the 
ORS API is that the algorithm is intended to minimize travel time rather than travel distance.  
Second, the mode of transportation selected by the user (i.e., Driving, Walking, Bicycling, etc.) 
and additional filters (i.e., avoid_features) will affect which algorithm is used to calculate the 
route.  There are two algorithms used to calculate the shortest travel time, Contraction 
Hierarchies (CH) and Core-ALT (CALT). 

CH Algorithm 
When driving by car and not using any filters, the ORS API uses the CH algorithm to calculate 
the shortest travel time route.  Using this algorithm, roads are categorized ordinally by level with 
international highways being considered the highest level and residential roads being considered 
the lowest level.  At the furthest distance, the route only considers the highest level of roads for 
travel.  As the route nears its destination, lower-level roads are considered.  The Dijkstra 
algorithm is then used to search through the hierarchy filtered networks to determine the shortest 
travel time route to the destination. 

CALT Algorithm 
When implementing filters, the ORS API uses the CALT algorithm to calculate the shortest 
travel time route.  When it is desirable to avoid obstructions such as rush-hour traffic jams, car 
accidents, or roads that are a higher safety risk to drive on, the CALT algorithm is used.  For the 
CALT algorithm, as in other travel time route algorithms, each road segment has a weight 
assigned to it based on the avoidance of undesirable segments.  The CALT algorithm 
incorporates dynamic weights on each segment, which consider any obstructions and adjust the 
route based on the avoidance of undesirable segments when an alternate route is available. 

AI-Driven Safe Navigation Tool Development 

AI-based Risk Scoring 
In this study, the research team employed a comprehensive approach by utilizing four distinct AI 
models: random forest, gradient boosting, support vector regression, and CatBoost (see 
Appendix C for the details of the algorithms). The objective was to develop an effective risk 
scoring system that considers various factors such as crash data, geometric properties of 
roadways, and weather information. By leveraging these AI models, this study aimed to capture 
the complex relationships and patterns present within the dataset, ultimately generating accurate 
risk scores for different road segments. Each model underwent rigorous training and validation 
processes to ensure robust and reliable results. Upon evaluating the performance of these models, 
it was observed that the CatBoost algorithm outperformed the other three algorithms in terms of 
predictive accuracy and overall performance. As a result, the final predictive values utilized in 
this study were derived from the CatBoost model.  
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Safe Navigation Tool Development 
The development tool can be accessed at: http://70.112.144.115:3838/. The interface of the tool, 
which used the ORS API,  is shown in Figure 2,  

 
Figure 2. User interface of safe navigation tool. 

The tool has four drop-down panels: 

• Temporal Scope (Annual, Day of the Week, Day of the Month) 
• Annual (All Years, 2017, 2018, 2019, 2020, 2021) 
• From (Start location) 
• To (end location) 

The user interface of the developed system incorporates drop-down panels, allowing users to 
select their preferred temporal scope and prioritize annual durations for risk assessment. To 
specify the desired time period, users can input “from-to” values similar to other popular 
mapping applications. Upon entering this information, users are required to click the “Direction” 
button. Upon completion of this action, the system generates a map displaying the safest route on 
the right-hand side of the user interface. Complementing the map, a tabulated comparison is 
provided below, highlighting the distinctions between the fastest route and the safest route. This 
comparison encompasses several key metrics, including crash scores, average crash scores, high 
crash scores, road identification associated with the highest crash score, sum of precipitation, 
distance in miles, and duration in minutes. This user-friendly system design provides users with a 
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comprehensive overview of the trade-offs between different routes based on safety 
considerations. By presenting both the visual representation of the safest route and a detailed 
tabulation of relevant metrics, users can make informed decisions that balance their priorities 
regarding travel time and road safety. 

Tool Development Steps 
The following steps were done to develop the tool (see Figure 3): 

• The user interface for this application was implemented using the R Shiny library. In the 
“sidebarPanel” function, user inputs are defined using “textInput” functions, which include a 
variable name (e.g., “fromAddress”), a display name (e.g., “From”), and a default input value 
(e.g., “Texas State University"). These input fields allow users to specify their desired 
starting location. In the “mainPanel” function, the application displays three outputs to users. 
The first output is a map representation that shows the routes based on the user’s input. The 
map visually depicts the various routes available.  

• The application's behavior is determined by the server function, which relies on user-
interface data. The “fromAddress” and “toAddress” variables provided by the user are 
geocoded using the ORS Geocoding API to obtain precise coordinates for the specified 
locations. These coordinates are then utilized to retrieve the fastest route directions from the 
ORS Directions API. The resulting route is subsequently processed through the “safeRoute” 
function, which extracts relevant information and descriptive text. This data is stored as 
“text” and subsequently returned to the user as part of the application's response. 

• The route is first converted to a “line string” shapefile.  Then, an index of segments that 
intersect the route is created using the “st_intersects” function.  Next, the index is iteratively 
looped to determine the combined safety score and to identify the most dangerous segment 
along the faster time travel route.  Lastly, statistical data is returned from the function for 
further processing. 
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Figure 3. Framework of safe navigation tool development steps. 

• The process begins by converting the route into a “line string” shapefile. Using the 
“st_intersects” function, an index is generated, consisting of segments that intersect with the 
route. Through an iterative loop, the index is analyzed to calculate the aggregated safety 
score and identify the segment with the highest level of danger along the faster time travel 
route. Finally, statistical data is extracted from the function, allowing for subsequent analysis 
and processing. 

• The research team implemented various components into the dashboard, including the 
header, sidebar, and main body, with the added functionality of hiding the header and sidebar 
if desired. Within the main body, two “textInput” functions were integrated, allowing users to 
input their desired source and destination. Additionally, an “actionButton” function was 
included to provide users with a clickable button that triggers the display of the map. The 
central component, the “google_mapOutput” function, plays a pivotal role in showcasing 
Google Maps, complete with the identified routes and associated crash attributes. 

• The server function plays a crucial role in the conversion of user interface inputs into a data 
frame of routes, which can then be processed and displayed on the map. Within this function, 
the variable “df_route” is created, containing important route details such as the source and 
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destination addresses. The “output$myMap” function serves as the central component 
responsible for determining the map’s visual display. It begins with an “if” statement to 
check for empty inputs, terminating the function if the condition is met. Additionally, an API 
key, necessary for accessing Google Maps functions and data, is included. Finally, the 
“google_directions” function from the “googleway” package is utilized to geocode the 
inputted source and destination addresses, generating encoded lines representing the route 
information to be displayed on the map. 

• To select the safest route among the alternatives provided by the Google Directions API, a 
series of data processing steps were performed. Firstly, the encoded routes from Google 
Maps were decoded to enable further coding-based data processing. The decoding process 
yielded waypoints, which were then combined using the “sf_linestring” function to create 
polylines. Subsequently, crash data were integrated into the database, assigning the 
respective number of crashes to each route. The “sf_nearest_feature” function was employed 
to identify the line segments closest to each route, allowing for the assignment of the 
corresponding crash numbers. Finally, a “for” loop was implemented to identify the safest 
route with the minimum number of crashes. These steps facilitated the selection of the route 
with the optimal safety outcome. 

The analysis of risk in road segments faces limitations due to the large variability in segment 
lengths. Although the average risk appears lower when considering the entire length of a 10,000-
foot road segment, it is crucial to acknowledge that there might be localized clusters of high-risk 
areas. These clusters could exhibit more than 50 crashes within 100-foot sections along the 
10,000-foot road segment. To address this limitation and reduce uncertainty, future research 
could consider dividing longer segments into shorter ones before associating crashes with their 
nearest segment. Additionally, while ORS available through the public API impose a distance 
restriction of approximately 93 miles for route calculations, this constraint can be overcome by 
locally hosting a private API server. 

Conclusions 
For real-time routing, it is essential to have up-to-date information regarding traffic conditions, 
road incidents (such as closures caused by flooding, crashes, and maintenance), and weather 
conditions. The availability of this data is crucial for the development of dynamic and predictive 
algorithms aimed at finding safe routes. However, this real-time information, particularly 
regarding traffic conditions and road closures, is not easily accessible to the public. This poses 
significant challenges in the development of effective route-finding algorithms. While the cost 
associated with collecting real-time data on traffic and road conditions can be high, 
crowdsourced data presents a potential alternative data source for obtaining real-time 
information (Amin-Naseri et al., 2018; Lin & Li, 2020).  The critical balance between time and 
safety is crucial. When the quickest route does not align with the safest route, individuals 
encounter a predicament regarding whether to select the safest path or the fastest one. While the 
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decision to prioritize either safety or time is subjective and dependent on the driver's preferences, 
it is anticipated to have an impact on other individuals using the road. Gaining insights into users' 
decision-making process when confronted with the choice between safety and travel time would 
facilitate proactive initiatives, such as educational activities, aimed at fostering road safety (de 
Leur & Sayed, 2003). 

Existing navigation applications like Google Maps and Apple Maps lack real-time risk scoring, 
resulting in limited safety considerations when suggesting alternative routes based on distance or 
travel time. To address this gap, this study successfully developed a user interface for a 
navigation tool that leverages diverse historical and real-time data sources to offer informed and 
data-driven decisions regarding the safest navigation options. By considering multiple scoring 
factors such as safety, distance, travel time, and an overall scoring metric, the tool provides users 
with an informed decision on the safest route. Through the integration of advanced AI algorithms 
and the incorporation of various data sources, this robust navigation tool significantly enhances 
the accuracy and reliability of route selection, ultimately improving overall road safety and 
enabling users to make well-informed decisions for their journeys. This distinctive contribution 
highlights the potential of AI-driven technologies to revolutionize the field of navigation and 
enhance road user safety. 

Although the current tool can be considered as a starting point, there remains a need for a more 
robust safe navigation tool. Table 6 summarizes future research needs.  

Table 6. Future Research Needs 

Problem Research Topic 

Accurate crash prediction models 

The safe route-finding algorithm should be designed as a 
predictive algorithm to account for changes in the risk of being 
involved in crashes. Future research is required to improve the 
accuracy of prediction models. 

Disaggregated crash prediction 
models for measuring safety 

Develop vehicle-level crash prediction models by providing the 
users with modified information about their trips based on the 
user's driving style, historical record of crashes, potential 
weaknesses, etc.  

Short duration crash prediction 
models 

Develop short-duration (e.g., daily, hourly) crash prediction 
models to provide more real-time aspects of safety on the 
navigation tools. 

Measurement of route safety Introduce new methods to aggregate road segment and vehicle-
level risks at the route level. 

Collecting crash and traffic data 
in real-time to support dynamic, 
predictive route-finding 

Investigate the potential of using crowdsourced data in safe 
route-finding algorithms. 

Trade-off between safety and 
time 

Investigate the sensitivity of users to the risk of being involved in 
crashes and travel time. 

Centralized or decentralized 
navigation system 

Explore the potential safety impacts of two types of safe route-
finding algorithms: centralized and decentralized. 
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Additional Products 
The Education and Workforce Development (EWD) and Technology Transfer (T2) products 
created as part of this project are described below and are listed on the SafeD Website. The final 
project dataset is located on the SafeD Dataverse1. 

Education and Workforce Development Products 
Undergraduate and graduate courses: 

• Texas State University CE 4361 Highway Engineering. 
• Three-hour long workshop at National Summer Transportation Institute (NSTI), Texas 

State University on July 20, 2023.  

• UTC presentations 

Student Funding and Enrichment: 

• TTI – two Ph.D. students, Yanmo Weng and Shoujia Li, at Texas A&M University.  

• TTI – one undergraduate student, Valerie Vierkant, at Texas A&M University. 

For Yanmo Weng and Shoujia Li, the project has been very beneficial. This project allowed both 
to enhance their knowledge in safety analysis and statistics, learn new programming languages, 
and publish papers. Valerie Vierkant learned how to assemble different types of traffic and 
roadway data, perform data quality control checks, process and analyze data, link databases, and 
download data from Waymo and the National Highway Traffic Safety Administration. 

Technology Transfer Products 
The main technology transfer products from this study include the following: 

• Datasets 

• Webinar 

• Li, S., Das, S., Ye, X., and Mills, D. Development of a Safe Route Navigation Tool. ITE 
Annual Meeting. August 13-16, 2023, Portland, Oregon.  

• Journal Article – Sohrabi, S., Weng, Y., Das, S., and Paal, S. Safe route-finding: A review 
of literature and future directions. Accident Analysis & Prevention. Volume 177, 2022. 
https://doi.org/10.1016/j.aap.2022.106816 

 
 
1 https://doi.org/10.15787/VTT1/AL4C8V 
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Data Products  
The research team uploaded one geodatabase 06_002 (06_002SampleData.dbf, 
06_002SampleData.shp, 06_002SampleData.prj, and 06_002SampleData.shx) along with their 
metadata. The metadata describes the data, including the source, description and coding of 
categorical variables, and number of missing values. 
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Appendix A: Literature Review 
The researchers used a scoping review framework by Arksey and O'Malley (2005) to explore the 
literature on safe route-finding. Scoping reviews have a wider scope and more inclusive criteria 
than systematic reviews (Munn & Peters, 2018; Sargeant & O'Connor, 2020). Their goal is to 
map the literature, identify key concepts, gaps, and limitations, and determine if a systematic 
review is needed. Unlike systematic reviews, scoping reviews do not assess the quality or 
aggregate the literature (Munn & Peters, 2018). This study focused on the exploration of the 
algorithms and approaches employed in safe route-finding. 

A search strategy was formulated to acquire relevant research evidence from three electronic 
research databases—Scopus, Web of Science, and Institute of Electrical and Electronics 
Engineers (IEEE) Xplore, along with the reference lists of the retrieved publications.  A thorough 
search was conducted across databases to locate published and indexed articles, letters, reports, 
book chapters, and books that incorporated a variety of keywords within their titles, abstracts, 
and keywords. Table 7 summarizes the two sets of keywords. The review included materials 
published up until October 2021. 

Table 7. Keywords Summary 

Category Keywords 

Route-finding 

Navigation system; Routing; Phone navigation; Car navigation; Bicycle 
navigation; Vehicle navigation; Automobile navigation; Pedestrian 
navigation; Road navigation; Route finding; Path finding; Road finding; 
Road guidance; Route guidance; Vehicle guidance; Car guidance; 
Navigation device; Route planning; Urban navigation; Vehicle 
information system; Navigation device 

Safety Safe; Crash; Collision; Accident; Crime; Hazard 

After reviewing the titles and abstracts of the identified records, the full text was examined based 
on predefined inclusion criteria designed to effectively address the review questions. Three 
distinct criteria were established for this purpose. 

1. Must discuss safety in route guidance as a system. Studies that only discuss route-finding 
algorithms are not included. 

2. Must investigate route-finding in land transportation rather than in aviation and maritime 
transport. 

3. Must propose an algorithm or quantification method instead of being a commentary 
publication. 

In total, the search yielded 5,955 publications, with 2,720, 2,246, and 989 publications sourced 
from Scopus, the Web of Science, and IEEE Xplore, respectively. Out of these, 40 publications 
were identified that met the inclusion criteria and thus underwent review. The PRISMA scoping 
review flow diagram (Tricco et al., 2018) in Figure 4 provides an overview of the implemented 
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scoping review. Figure 5 illustrates the yearly publication count starting from 2010. Notably, 
there has been an increase in publications, indicating a growing research interest in safe route-
finding in recent years. The results of this review are discussed in the following sections. The 
literature covering the definition of safety, the measurement of safety, and safe route-finding 
algorithms are all summarized (Table 8 shows overall summaries of the literature). 

 
Figure 4. Study identification and selection mechanism of the implemented scoping review. 

 

Id
en

tif
ic

at
io

n 
Sc

re
en

in
g 

El
ig

ib
ili

ty
 

In
cl

ud
ed

 

Records identified through 
database searching 

(n = 5955) 

Records after duplicates removed 
(n = 3976) 

Records screened 
(n = 3976) 

Records excluded 
(n = 3766) 

Full-text articles assessed 
for eligibility 

(n = 211) 

Studies included in review 
(n = 40) 

Full-text articles excluded 
(n = 170) 

Not land transport: 7 

Not RGS: 48 

Not include safety: 132 

 



31 
 

 
Figure 5. Publications by year (as of October 2021). 

Table 8. A Summary of the Reviewed Studies 

Study Definition of 
Safety 

Measurement 
of Safety 

Algorithm: 
Predictive/

Reactive 

Algorithm: 
Dynamic/ 

Static 

Algorithm: 
Centralized/ 

Decentralized 

(Santhanavanich et 
al., 2020) 

Pedestrian or 
cyclist crash 

risk 
Data-driven Reactive Dynamic decentralized 

(Sarraf & McGuire, 
2018) 

Vehicle crash 
risk Scoring Predictive Static decentralized 

(Mata et al., 2016) Crime risk Data-driven Predictive Dynamic decentralized 
(Kaur et al., 2021) Crime risk Scoring Reactive Dynamic decentralized 
(Radojičić et al., 

2018) 
Vehicle crash 

risk Data-driven Predictive Static decentralized 

(Takeno et al., 2016) Vehicle crash 
risk Data-driven Predictive Static decentralized 

(Bao et al., 2017) 
Pedestrian or 
cyclist crash 

risk 
Scoring Reactive Static decentralized 

(Chen & Lou, 2021) Vehicle crash 
risk Data-driven Predictive Static decentralized 

(Khanfor et al., 2020) Health risk Safety 
indicator Predictive Static decentralized 

(Mishra et al., 2021) Health risk Scoring Predictive Static decentralized 

(Ito & Koji, 2020) Vehicle crash 
risk Scoring Reactive Dynamic decentralized 

(Utamima & 
Djunaidy, 2017) Crime risk Data-driven Reactive Static decentralized 
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Study Definition of 
Safety 

Measurement 
of Safety 

Algorithm: 
Predictive/

Reactive 

Algorithm: 
Dynamic/ 

Static 

Algorithm: 
Centralized/ 

Decentralized 

(Li et al., 2014) Vehicle crash 
risk Data-driven Reactive Dynamic decentralized 

(Cantarero et al., 
2021) Health risk Safety 

indicator Predictive Dynamic decentralized 

(Shah et al., 2020) 
Pedestrian or 
cyclist crash 

risk 
Scoring Reactive Dynamic decentralized 

(Abdelhamid et al., 
2016) 

Vehicle crash 
risk Data-driven Predictive Dynamic decentralized 

(Preda et al., 2013) HAZMAT risk Scoring Predictive Static decentralized 
(El-Wakeel et al., 

2018) 
Vehicle crash 

risk 
Safety 

indicator Reactive Dynamic decentralized 

(He & Qin, 2017) Vehicle crash 
risk Data-driven Predictive Static decentralized 

(Byon et al., 2010) Crime risk Scoring Predictive Static decentralized 
(Hoseinzadeh et al., 

2020) 
Vehicle crash 

risk Data-driven Predictive Dynamic decentralized 

(Zhou et al., 2017) Vehicle crash 
risk Data-driven Predictive Static decentralized 

(Abdelrahman et al., 
2019) 

Vehicle crash 
risk Data-driven Predictive Dynamic decentralized 

(Hayes et al., 2020) Vehicle crash 
risk Data-driven Predictive Static decentralized 

(Bura et al., 2019) Crime risk Data-driven Predictive Static decentralized 
(Krumm & Horvitz, 

2017) 
Vehicle crash 

risk Data-driven Predictive Static decentralized 

(Li et al., 2016) Vehicle crash 
risk Data-driven Predictive Dynamic decentralized 

(Kamal Alsheref, 
2019) 

Vehicle crash 
risk Scoring Predictive Static decentralized 

(Soni et al., 2019) 
Vehicle crash 

risk/Crime 
risk 

Scoring Predictive Static decentralized 

(Eren & Tuzkaya, 
2021) HAZMAT risk Scoring Predictive Static decentralized 

(Alpkoçak & Cetin, 
2020) Crime risk Data-driven Predictive Static decentralized 

(Ouyang et al., 2014) 
Pedestrian or 
cyclist crash 

risk 

Safety 
indicator Predictive Dynamic decentralized 

(Yew et al., 2010) 
Pedestrian or 
cyclist crash 

risk 
Data-driven Predictive Static decentralized 
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Study Definition of 
Safety 

Measurement 
of Safety 

Algorithm: 
Predictive/

Reactive 

Algorithm: 
Dynamic/ 

Static 

Algorithm: 
Centralized/ 

Decentralized 

(Liu et al., 2017) Vehicle crash 
risk Data-driven Predictive Dynamic decentralized 

(Levy et al., 2020) Crime risk Data-driven Predictive Static decentralized 

(Puthige et al., 2021) 
Vehicle crash 

risk/Crime 
risk 

Data-driven Predictive Static decentralized 

(Chandra, 2014) 
Pedestrian or 
cyclist crash 

risk 
Data-driven Predictive Static decentralized 

(Lozano Domínguez 
& Mateo Sanguino, 

2021) 

Pedestrian or 
cyclist crash 

risk 

Safety 
indicator Predictive Static decentralized 

(Shubenkova et al., 
2018) 

Pedestrian or 
cyclist crash 

risk 

Safety 
indicator Predictive Static decentralized 

(Galbrun et al., 2016) Crime risk Data-driven Predictive Static decentralized 
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Appendix B: Data Preparation for Texas-based 
Case Study 
The following steps were conducted to prepare the databases for analysis: 

• First, the datasets from CRIS and TxDOT (w/o assets) were loaded into the R environment.  
The CRIS dataset was converted to a point shapefile from its original CSV format using the 
“st_as_sf” function from the “SF” package”.  The CRIS dataset was assigned the same 
geographic coordinate system as the Roadway Inventory dataset, North American Datum 
1983.  The “st_nearest_feature” function from the “SF” package was used to create an index 
of the closest road, from the TxDOT dataset, in proximity to each CRIS recorded crash.  The 
“st_nearest_feature” function is a pairwise function that determines the nearest points 
between pairs of geometries.  The function compares the latitude and longitude of each crash 
point to the latitudes and longitudes of every polyline road segment.  The algorithm is 
considered a Brute Force algorithm which has high computational requirements.  There is no 
need to explore the use case of a faster algorithm at the potential cost of data quality because 
this algorithm was only used once as a data preparation step and thus has no effect on the 
computational performance of the end-user experience.  The relevant code for this data pre-
processing step is in Figure 6. 

• Next, a sum of the number of crashes at each segment was determined based on the crash 
index created by the “st_nearest_feature” function.  The sum for each segment was added to 
the TxDOT Roadway Inventory dataset in a newly created field, “numCrashes”.  Of the 
514,480 roadway segments in the TxDOT w/o Assets dataset, there were 64,684 roads with 
crashes.  The file was reduced to only the 64,684 road segments on which crashes occurred 
prior to normalizing the data.  The file reduction resulted in a 97.71% faster computation 
time for normalizing the data. 

• The lengths of road segments in the TxDOT dataset are not equal and have a large variation.  
The length of road segments with crashes ranges from approximately 23 feet to 635 miles.  
To better quantify the risk associated with the number of crashes on each road segment, the 
length of the road segment is a necessary factor to include, as a 1,000-foot-long road segment 
with 50 crashes is more dangerous than a 100,000-foot-long road segment with 500 crashes.   
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Figure 6. Assigning traffic crash data on RHiNO network.  
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• Prior to normalizing the data, the length of the road segments was calculated into miles using 
the “st_length” function and the geometry of each polyline. Then, the number of crashes was 
divided by the segment length to create a common metric across the dataset representing the 
number of crashes per mile of road.  The crashes per mile of road segment was then 
normalized on a scale of 0 (no crashes/mile) to 1 (the highest number of crashes/mile within 
the dataset) by dividing the crashes per mile for each road segment by the highest number of 
crashes per mile in the road segment dataset.  An example of the difference between risk 
scores can be seen below in Figure 7a and Figure 7b.

 
Figure 7. Assigning risk scores.  

 

 

 

 

 

 

 

 

 

 

 



37 
 

Appendix C: Artificial Intelligence-based Models 
Random Forest (RF)  
Random Forest (RF) is a supervised machine learning algorithm that uses bootstrap sampling to 
create new training sample sets. It builds decision trees based on these samples (Hefner et al., 
2014), with each tree being independent (Liaw & Wiener, 2002). RF is based on a decision tree 
and bagging framework. RF does not prune the decision trees during development. Although 
individual tree accuracy may be low, combining their predictions generates a more accurate 
overall result (Xu & Luo, 2021). The RF approach involves two steps: forest formation and 
decision-making. The algorithm randomly divides training samples into subsets, constructs 
Classification and Regression Tree (CART) decision trees, and determines predictions using a 
simple voting method. The final prediction is the average of the predictions from multiple 
decision trees. See Figure 8 for a visual representation of the RF algorithm. 

 
Figure 8. Random Forest algorithm (Xu & Luo, 2021). 

The margin function in RF is given by Equation 1 (Breiman, 2001). 

𝐦𝐠(𝐗, 𝐘	) = 	𝐚𝐯𝐤	𝐈(𝐡𝐤	(𝐗) = 	𝐘	) − 𝐦𝐚𝐱
𝐣#𝐘

𝐚𝐯𝐤	𝐈(𝐡𝐤	(𝐗) = 	𝐣)	 (1) 
 

Where h% (x), h& (x), . . ., h' (x) are ensembles of classifiers, X, and Y are random vectors, and I 
is the indicator function. 
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The margin function evaluates the difference in the average number of votes between the right 
class that exceeds and the average vote for all other classes. A larger margin indicates a higher 
level of confidence in the classification (Breiman, 2001).  The error generalization is given by: 

𝐏𝐄∗ = 𝐏𝐗,𝐘	(𝐦𝐠(𝐗, 𝐘	) 	< 	𝟎) (2) 
Where X, Y indicates that the probability is over the X, Y space. 

Gradient Boosting (GB) 
The Gradient Boosting (GB) method, also known as multiple additive trees (MAT), is an 
improvement on Decision Trees (DT) proposed by Friedman (2001, 2003). GB uses stochastic 
gradient boosting to combine models and boost accuracy in data mining. Boosting enhances 
learning algorithms by combining low-error-rate models into an ensemble, resulting in improved 
performance. The flow chart in Figure 9 illustrates the GB machine learning method, where 
weak classifiers are combined in an ensemble. Incorrectly predicted points are given higher 
weights in subsequent classifiers, and the final decision is based on the weighted average of 
individual predictions (Zhang, 2021). A GB model approximates the true functional relationship 
and can be described by Equation 3 (De’ath, 2007; Hastie et al., 2009). 

𝐟(𝐱) =7𝐟𝐧(𝐱)
𝐧

=7𝛃𝐧𝐠(𝐱, 𝛄𝐧)
𝐧

 (3) 

Where x is a set of predictors and f(x) is the estimate of the response variable. g(x, γn) are single 
decision trees with the parameter γn signaling the split variables. Coefficients βn (n = 1,2,...,n) 
determine how each tree is joined together. Values of βn depend on the minimization of a 
specified loss function, L(yi,f(xi)). Prediction performance is measured by a loss function, such 
as deviance. A numerical optimization method named functional gradient descent was proposed 
by Friedman (2001). The algorithm to initialize f0(x) is given below. 

1. For n=1,2,3,…m (number of trees) 
a. For i = 1 to m (number of observations), calculate the residuals 

y;,- =	− <
∂L(y,, f(x,))
∂f(x,)

A
.(0)2.!"#(0)

 

b. Fit a decision tree to 𝑦"!"to estimate γn 
c. Estimate βn by minimizing L(yi,fn − 1(xi) + βng(x,γn)) 
d. Update fn(x) = fn − 1(x) + βng(x, γn) 

2. Calculate  
f(x) =7f-(x)

-
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Figure 9. Flowchart for gradient boosting (Zhang et al., 2021). 

The iterative tree building process often leads to overfitting, where models perform well only on 
trained data and have low accuracy on other datasets. To prevent overfitting, the model is tested 
with a separate dataset. Training stops when the model performs well on both the training and 
test datasets. Regularization parameters, including learning rate and tree complexity, help 
address overfitting and improve model performance. The learning rate determines the speed of 
model improvement, with lower values requiring more data and time but minimizing loss 
function (De’ath, 2007). Higher values lead to overfitting and poor performance. Tree 
complexity refers to the number of nodes in a tree, with a simple tree having two nodes and one 
split (Hastie et al., 2009). Balancing the learning rate and tree complexity is essential to avoid 
overfitting. 

Support Vector Regression (SVR) 
Support Vector Regression (SVR) (Cortes & Vapnik, 1995) is a supervised machine learning 
model derived from Support Vector Machine (SVM) (Vapnik, 2000; Smola & Schölkopf, 2004). 
SVR is similar to SVM but with a few updates (Yang et al., 2017). It maps the data nonlinearly 
and solves the linear regression problem in a higher dimensional feature space (see Figure 10). 
This allows SVR to describe non-linear relationships. 
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Figure 10. KNN approach using k = 10 (Özdoğan-Sarıkoç et al., 2023). 

The regression function is defined by the following equation (Özdoğan-Sarıkoç et al., 2023). 

𝒇(𝒙) 	= 	7(𝝏𝒊4 − 𝝏𝒊5)	𝑲	(𝒙𝒊,𝒙𝒋) + 𝒃
𝒏

𝒊2𝟏

 (5) 

Where K(xi,xj) is the kernel function. In this study, the kernel functions tested are radial basis 
function (RBF), polynomial, and linear kernels, which are shown in Equation (6). 

𝐋𝐢𝐧𝐞𝐚𝐫	𝐊𝐞𝐫𝐧𝐞𝐥 ∶ 	𝐊	(𝐱𝐢, 𝐱𝐣) 	= 	𝐱. 𝐱𝐢  

𝐏𝐨𝐥𝐲𝐧𝐨𝐦𝐢𝐚𝐥	𝐊𝐞𝐫𝐧𝐞𝐥 ∶ 	𝐊	(𝐱𝐢, 𝐱𝐣) 	= 	 (𝛄(𝐱. 𝐱𝐢) + 𝐛)𝐝 (6) 

𝐑𝐚𝐝𝐢𝐚𝐥	𝐁𝐚𝐬𝐢𝐬	𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧	𝐊𝐞𝐫𝐧𝐞𝐥	 = 	𝐊	(𝐱𝐢, 𝐱𝐣) 	= 	𝐞𝐱𝐩(−
‖𝐱 − 𝐱𝐢‖
𝟐𝛔𝟐 )	  

Where 𝛾 is the structural parameter in the radial basis function, polynomial kernels, 𝜈, represent 
the residuals, and d is the degree of the polynomial term.  

Cat Boosting 
CatBoost (CB) is a machine learning approach developed by Yandex engineers in 2017 
(Prokhorenkova et al., 2018). It is derived from Gradient Boosting Decision Tree (GBDT) (see 
Figure 11), a robust technique for solving challenging machine learning problems involving 
heterogeneous features, noisy data, and complex dependencies. 
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Figure 11. Gradient boosting decision trees (Alcolea et al., 2020). 

CatBoost has the following advantages compared to other GBDT algorithms:  

Firstly, CB effectively handles categorical data. Traditional GBDT algorithms can replace 
categorical features with corresponding average label values. In decision trees, the average label 
value is used for node splitting, referred to as Greedy Target-based Statistics (Greedy TBS), 
defined by Equation 8 (Prokhorenkova et al., 2018). 

∑ c𝐱𝐣,𝐤 = 𝐱𝐢,𝐤d𝐘𝐢
𝐩
𝐣2𝟏

∑ c𝐱𝐣,𝐤 = 𝐱𝐢,𝐤d𝐧
𝐣2𝟏

 (8) 

When we consider a dataset of observations D={Xi, Yi} i = 1, ..., n, if a permutation is σ=(σ1,..., 
σn), 𝑥=$,& is substituted with:  

∑ f𝒙𝝈𝒋,𝒌 = 𝒙𝝈𝒋,𝒌g 𝒀𝝈𝒋 	+ 	𝓪𝑷
𝒑2𝟏
𝒋2𝟏

∑ f𝒙𝝈𝒋,𝒌 = 𝒙𝝈𝒋,𝒌g 	+ 	𝓪
𝒑2𝟏
𝒋2𝟏

 (9) 

Where p is a prior value and 𝒶 is the weight of the prior value. This method contributes to 
reducing the noise obtained from the low frequency category.  

Secondly, CB combines multiple categorical features and their combinations in the current tree 
with all categorical features in the dataset.  Thirdly, CB gradient bias is overcome by CatBoost. 
GBDT generates a weak learner in each iteration and each learner is trained based on the 
previous learner’s gradient. The output is provided via the accumulation of classified results of 
all learners (Friedman, 2002). The final learned model might be overfit due to biased pointwise 
gradient estimation. CB uses a new method, ordered boosting, to change the gradient estimation 
method in the classic algorithm, which can overcome prediction shifts caused by gradient bias 
and further enhance the model’s generalization ability (Prokhorenkova et al., 2018).  CB trains a 
separate model Mi for each sample Xi to obtain an unbiased gradient estimation. The model Mi is 
trained with a training set without sample Xi. Mi is used to obtain a gradient estimation of the 
sample. This gradient is used to train the final model’s base learner.  
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